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Abstract

NEXUS is a novel simulation environment designed- for modeling large neural systems. The

simulator allows the user to incorporate complex functional properties and symbolic processing

at the level of the individual unit. In addition, NEXUS takes advantage of the principle of

topological map organization, found throughout the mammalian nervous system, to facilitate the

modeling and design process. An easy-to-use graphical interface allows the user to interactively

build and test models. This paper describes the principles underlying the NEXUS design and

its advantages over other current simulation approaches.

Keywords: neural networks, neural simulation, perceptual modeling, interactive simulation.

I. Introduction

Simulation has become an important technique in understanding the functional mechanisms of

neural systems. The major problem encountered when designing or using a neural network sim-

ulator stems from the multiple levels of organization, from molecular to behavioral, at which

neural systems can be studied. Simulations of simple nervous systems, incorporating detailed

neurobiological data, require a significantly different modeling approach than simulations of con-

nectionist or artificial neural networks. In addition, models concerned with high-level perceptual

and cognitive processing often have their foundations in psychology and psychophysics and there-

fore the details of their architecture may differ from physiologically-based studies. Our research

interests deal with modeling aspects of brain structure, particularly those found in the cerebral

cortex, together with data from psychophysics, in order to construct models of perception. These

models tend to be very large, on the order of 101 units and 106 connections, and they require a

great deal of computational power and storage capacity. I 0

Several software packages are currently available to the neural modeler. Some systems,

such as the Rochester Connectionist Simulator (Goddard, et al., 1987), are suited for large-scale
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simulation of artificial neural networks. Other simulators, such as GENESIS (Wilson et al., 1989)

and SLONN (Wang and Hsu, 1990), are capable of modeling both biological and artificial neural

networks, however the generality that they intrc iuce comes at the cost of placing limitations

on the model's size. Though a system like GENESIS is capable of simulating most classes of

neural networks, the limitations of today's computing technology make these systems beet suited

for moderately sized (less than 10' units) but biologically detailed models. Since none of the

available systems are adequate for the types of models we wish to simulate, we have developed

the NEXUS simulation environment. The capabilities we require of our system include:

" a simple, easy-to-use methodology for building and testing very large neural models

" an efficient means of storing and simulating large models

" a gpneralized method of simulating the functional properties of neural circuits and assem-

biis, which can then be used as building-blocks of larger networks

" a provision for integrating different network paradigms into a single simulation

To realize these capabilities we have built three distinguishing features into NEXUS;

" a language for describing network architecture which is based on the topological organiza-

tion of neural maps

" a programmable neural unit with a language for defining its functional operation

* support for the simulation of hybrid networks

Though not a general-purpose neural network simulator. NEXUS offers enough flexibility

to be used for a variety of network models, particularly those which require large numbers of

units. In addition, the support for hybrid systems and programmable units allows a modeler to

integrate cognitive or symbolic processing within a highly distributed system.
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II. Design Principles

Neural map architecture

For our purposes, a neural map consists of a collection of units with similar connectivity and

functional properties. Map organization has been found in all areas of the cerebral cortex as

well as in many subcortical areas. The three major properties of neural maps which are critical

to the NEXUS design are:

e topological organization

* parallelism

e receptive field (connection field) based architecture

One of the major difficulties in simulating large neural networks is defining the network

connectivity. Explicitly defining connections can be cumbersome, and in fact intractable, when

the number of connections is on the order of 105 or 106. In NEXUS, individual neural connections

are not specified, rather a user creates a general connecton scheme for each map. The system

uses topology and parallelism to establish the connections for each of the units in the map.

Figure 1 illustrates how a typical set of three maps could be connected. The number of units

in a map is reflected by its dimensions. A graphical representation of the connection scheme

is shown for a unit in map 1, located at (ml,nl). In this example, the unit in question has

anterograde connections to map 2 (connections projecting from map 1 to map 2) and retrograde

connections from map 3 (connections projecting from map 3 to map 1). In addition it has internal

connections within its own map. Connections are defined by a target unit and a connecton field.

The target unit represents the geometric center of the connection pattern and is determined by

a topological mapping which takes map size and spatial transformations into account.

The connection field (CF) is defined as the function which specifies the spatial extent and

cnnductance values (weight-) fcr the connections about a given target unit. Note that the
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connection field implicitly defines a unit's receptive field, the area which when stimulated affects

the output of the unit. Physiologists have often used receptive fields as a means of classifying

the functional properties of neurons. In NEXUS a CF is the kernel in the spatial convolution;

dt d2

(i,j) = j E Cij(k,1)O(i+k,j±i) (1)
k=-dl 1=-d 2

The input to a particular unit, I(i, j), is given by the convolution of its connection field. Cj (k, 1),

with the outputs, O(i + k,j + 1), of those units from which it receives connections. The inset

in figure 1 is an expanded view of a CF about the target cell (M 2 , n2 ). The dimensions and

orientation of the CF are specified by three parameters: length 1, width w. and the angular

rotation, 0, about the x-y axis. The conductance value assigned to a particular connection

within the CF is a function of the position of the given unit relative to the target unit. For

example, if the ith unit in map 2 of figure I falls within the CF defined by w, I and d then the

conductance of its connection is equal to;

Ci = f(z - M 2 , y - n 2 ) (2)

where z and y are the absolute coordinates of the unit in map 2 and f is a two dimensional

function for assigning the conductances (see below).

A neural map architecture provides several powerful advantages in building and simulating

neural models. The first is the savings in time and effort required to build and implement

the model. Since a modeler need only define connection schemes, not individual connections,

a major amount of the tedious design process is removed. A second advantage is the inherent

scalability introduced with neural maps. In designing a model, often one does not require a full

size implementation and in fact a scaled version of the model can increase speed and save in

development time. Since connectivity in neural maps is functionally specified, rescaling the size

of the networks is trivial, with the simulator recalculating the individual connections. Finally,

the structural organization of neural maps make them particularly well suited for models which
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involve processing spatial information, such as vision.

The NX network architecture specification language

The neural map architecture is specified within the NEXUS environment by means of the lan-

guage NX. NX is a hierarchical language which allows a user to quickly and easily create a model.

It incorporates an intuitive syntax and regular structure, making it straightforward to learn and

understand. The main features of the NX syntax are illustrated in the following example.

Figure 2 is a segment of NX code which defines a model consisting of two networks (a neural

map and a network are considered the same object within NX). The architecture of the model

is defined in a single NX file and constitutes the simulation structure. Within the file are the

descriptions of network structures. The two networks defined in figure 2 are named "Retina"

and "LGN". The number of units in the network "Retina" is 4096 and its spatial dimensions

are 64 x 64. An initial firing rate of the neural units is specified, usually as a function of

a random variable or loaded from a matrix of values. The activation function transforms a

unit's input (as defined by the CF convolution in equation 1) into its output. The specifics of

activation functions will be discussed in more detail in the section on PGN units. All units in a

given network have the same activation function.

Within a network structure exist several connection structures. These represent the defini-

tions of the connection fields and spatial transformations for determining the target unit, and

thus define the connection schemes discussed previously. For the "Retina" in figure 2, no connec-

tion structures are defined. In contrast, the "LGN" has two connection declarations. The first

set of connections are retrograde, indicated by the syntax from, originating from the "Retina";

the second set are anterograde, indicated by the syntax to, and remain within the "LGN". The

shape of the connection field can be either elliptical or rectangular, with the dimensions specified

by the user. The spatial transformations of the target connections are set with the rotation,

x translation and y translation declarations. Control of these parameters allows the user
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considerable flexibility in defining the location of the CF. Finally the connection function

determines the spatial distribution of the conductances for the CF (this function corresponds to

f in equation 2). CFs can be specified by explicit functional descriptions, or can be defined in a

file containing a matrix of conductances. In figure 2 the first set of connections has an explicitly

defined connection function dogo), which denotes a "difference of gaussians". In this case the

conductance of the connection for the unit at location (z, y) is;

C(z,y) = Se, I-e e')- -Sin -e - 1-e' (3)
2 \r \I 'e: fe :! \'in ain

where 0'. and o,,, are standard deviations and Se, and Sin are scaling factors of the excitatory

and inhibitory gaussian components. This type of CF can be used to extract edges from an image,

and its center-surround structure (central region of excitatory connections and a surrounding

region of inhibitory connections) has been widely used in modeling early vision (Marr, 1982).

The second set of connections has a circularly symmetric exponential CF, as indicated by the

syntax expo).

Larger simulations, having more than two maps, are created by extending the code in figure

2. It is important to note how easy it is to define a model with NX. The limited syntax and

hierarchical organization make defining a model more a process of establishing specifications

than writing programming code. In fact one can simply use a template, similar in structure to

the code in figure 2, and fill-in the desired values of the parameters.

It should be clear from examining the NX code that the functional properties of a given unit

depend on its CF and activation function. The CF transforms outputs of units into the input of

a given unit, while the activation function takes the input to the unit and transforms it into its

output. A typical activation function is given by the sigmoidal function:

O(ij) - i (4)

where O(i,j) is the output of the cell located at (i,j), I(i,j) is the input to unit (i,j) (determined
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in equation 1), 0 is a thresholding constant and S is a constant which controls the gain of the

sigmoid. Many neural network models use this type of activation function, most notably back-

propagation models which require continuous derivatives (Rummelhart and McClelland, 1986).

However this model of a neuron's response is not applicable to all types of neural simulations.

We therefore have included in NEXUS the capability of defining a unit's activation function.

These Programmable Generalized Neural (PGN) units not only can have arbitrary activation

functions, but can execute a logical sequence of code, making for an integration of symbolic and

distributed computation.

Programmable Generalized Neural units

A second fundamental design principle of NEXUS involves the use of a novel network construct

we call PGN (Programmable Generalized Neural) units. These units are capable of performing

more complex operations than conventional models of single neurons. Each PGN unit can execute

a set of commands analogous to a sequential instruction set. A single PGN unit can in fact be

substituted for a small network or local assembly of neurons. By constructing PGN units, the

modeler can generate functional properties without simulating the low level details of individual

units. PGN units thus represent a compromise between a top-down and bottom-up modeling

approach.

PGN units are particularly attractive in situations where the exact nature of the underlying

neural operation is unknown (so modeling at a detailed level is useless), yet the computational

nature of the problem is intense, requiring masses of cells each performing simple operations. In

these cases, a single PGN unit can replace a whole hierarchy of conventional units. In addition

to such generalized functions, PGN units can also carry out more typical cellular or network type

operations (such as scaling and adding inputs, thresholding, and computing output functions).

Thus, one has the option of designing a system where, in different maps, the individual units are

modeled at any level between neurons and assemblies.



Another advantage of modeling with PGN units concerns the implementation problems as-

sociated with current computing technology. Limited memory and speed, as well as the obvious

disadvantage of modeling a highly parallel system on a sequential machine, constrain the size

of most networks. Until fast parallel machines become available on a wider scale, large ncural

models consisting of simple neurons will only be able to simulate rudimentary aspects of neural

processing, and higher processes such as perception and cognition will remain unapproachable.

By using maps of PGN units in place of large networks of simple neurons, one can save on the

memory required to store individual cells and their connections. Depending on the particular

implementation, a user can save both system memory and execution time.

Figure 3 illustrates how a single PGN unit can functionally replace a small network of simple

units. This example models a mechanism for determining the local orientation of line segments.

Figure 3a shows a small set of cells, connected so that they are selective to 450 lines. For this

implementation there are nine input units, one response unit and nine connections. The firing

rate of the response unit, as a function of line orientation, is shown in figure 3b. Figure 3c is a

segment of code for the activation function of a PGN cell which is also sc!ective to 45' lines. This

particular activation function is called diagonal.line() and would be referenced in the NX

file for this model. PGN units are programmed using the C Programming Language and a set of

library functions unique to NEXUS. The first function call in the PGN code gets the target unit

using the PGN library function get-cell.fromconnectiono). We will not go into the details

of the syntax except to say that we have incorporated an object-oriented style for defining PGN

functions. With the target cell location in the input map, we find the firing rates of neighboring

cells using the functions get-nearest -neighboor() and get-firingrateo). By multiplying

the firing rates by a set of constants equal to the conductances in figure 3a, we form the input

I(i,j). Finally, using an activation function, such as in equation 4. we determine the firing

rate of the response cell. In this example, we still require nine input cells and a response cell
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(the response cell would in fact be the PGN unit executing the code in figure 3c). However, in

the PGN model, only one explicit connection (the connection to the target unit) is stored. The

other connections are implicit and are computed using the get -nearest -neighboor ) function.

The savings in the number of connections (one connection for the PGN implementation of figure

3c versus nine for the architecture in figure 3a) may seem minimal at this scale, but for large

simulations and more complex architectures the savings can be enormous.

The previous example is just one way in which PGN units can be used in NEXUS simulations.

Some models may not warrant this structural abstraction. However, the example illustrates how

a function, presumably performed by many simple units, can be incorporated into the operation

of a single complex unit. Models of complex biological processing, in which a corresponding

simple unit architecture is difficult to construct, can also be simulated using the PGN paradigm

(Sajda and Finkel, in preparation).

Hybrid networks

Since our models incorporate several different levels of organization, from single cells to more

complex perceptual processing, we have built into NEXUS the capability of simulating hybrid

neural networks. Our definition of a hybrid network is a set of interconnected neural networks

which are based at different levels of abstraction. For example, an object recognition system

might be designed to incorporate both connectionist and biologically-based networks. In this

case the image would be preprocessed by units whose connection fields loosely conform with

biological data. However, instead of modeling a biological memory mechanism, the system

might learn to recognize particular objects by training with backpropagation (see Rummelhart

and McClelland, 1986) for details of the backpropagation algorithm). The learning rule used by

the recognition units should not affect the preprocessing units, but both sets of units must be

capable of exchanging information. The model therefore consists of two sections, a biologically-

based preprocessing module and a connectionist recognition module.
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Simulating hybrid networks is not difficult to incorporate into a simulator, arid in fact the

simulators which have been previously mentioned should be capable of simulating such hybrid

systems. The point we wish to make is that since our models require many different levels of

abstraction, the principle of hybrid networks is an intrinsic property of the NEXUS design.

III. Simulator Operation

Running a simulation with NEXUS consists of three phases: model specification, compilation,

and interactive display. Figure 4 illustrates the system's organization and control flow. The first

task for the NEXUS user is creating the specifications for the model. As discussed previously, the

architecture of the model is defined within an NX file. In addition, the user can define activation

functions for PGN units. If the model requires connection field architectures which are not part

of the standard NEXUS library then these too can be created.

Once the proper specifications are written, NEXUS compiles and constructs the functions

and data structures. The NX architecture file is parsed and the neural maps are dynamically

built as a linked list. This is in contrast to several other simulators which require static array

declarations. The main advantage of dynamic construction is that one does not need to recompile

the simulator for each model. In addition, dynamic construction supports models which require

unit or connection replication, such as mciosis networks (Hanson, 1990). An additional step of

data reformatting and compression is used to align the data structure in working memory and

reduce its overall size.

All phases of NEXUS are menu driven, using an X windows based graphics interface. A 3D

graphics environment is used to display the model, allowing the user to manipulate the neural

maps, units and connections as if real objects. An attractive feature of NEXUS is the ease with

which a user can interact with and test a given model. A locator or mouse is used as an electrode,

allowing the user to probe connectivity and stimulate particular units in the network. Figure 5
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shows a typical graphics display. In addition to stimulating units and interactively examining

and modifying connectivity, the user can also incorporate several types of learning rules into the

model. Backpropagation and a version of the Hebb rule (Hebb, 1949) are currently supported.

For models which are involved with image processing, large and complicated stimulus patterns

can be created and loaded into individual maps. Finally, a variety of updating schemes for unit

activity are available, from random sampling to sequential evaluation.

IV. Conclusion

NEXUS, and the simulation methodology it incorporates, is designed for simulating large neural

networks or systems which require several levels of structural organization. Several large scale

models are currently being simulated with NEXUS, including models of depth-from-occlusion,

consisting of 50 maps, 105 units and 106 connections (Sajda and Finkel, in preparation), and

color perception (Finkel, Courtney and Buchsbaum, in preparation). Currently, NEXUS is

designed to run exclusively on a conventional sequential computer. However, future versions will

be designed to take advantage of parallel architectures, and work is bein 6 done to modify the

NEXUS software for the ConnectionMachineTM (Hillis, 1985). Finally, we feel that the system's

utility is not limited to neural modeling and may in fact be useful for simulating any number

of large distributed systems having units of varying degrees of complexity and abstraction and

requiring both a top-down and bottom-up approach.
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Figure 1: Schematic of a neural map architecture. Connection schemes are shown for a unit

in map 1 at location (ml,n 1 ). Shaded regions show the extent of the connection fields. inset

The connection field around the target unit (rn2 , n2 ) and the associated parameters defining its

spatial characteristics. (Note that the grid lines suggest that that maps contain many units.)

Figure 2: Example of NX code describing a model with two neural maps.

Figure 3: Example of a simple architecture for orientation selectivity. A. Configuration

which is selective to 450 lines. The 3 x 3 input array is connected to the response cell (unit with

dark 45' line segment), with the value of the conductance indicated by the value in the input

unit. B. Firing rate of the response cell as a function of orientation of the stimulus. C. PGN

code for 45' orientation-selective cell.

Figure 4: Organization of the NEXUS system.

Figure 5: NEXUS graphics display.
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I' segment cf NX networK specification code I/

Retina i

number of units = 4096;
x dimension = 64;
y dimenston = 64;
initial firing rate = file{"image.in");
activation function = siqmoidal(100.0, 0.0, 25.0);

number of units = 4096;
x dimension = 64;
y dimension = 64;
activation function = sigmoidal{100.0, 0.0, 25.0);
connections f

from Retina
mapping type = direct;

rf shape = ellipse;
length = 7;
width = 7;

rotation = 0;
x translation = 0;
y translation = 0;

connection function = dog{l.0, 1.0, 1.5, 1.0);

to LON
mapping type = direct;

feedback = off;
rf shape = ellipse;
length = 20;
width = 20;

rotation = 0;
x translation = 0;
y translation = 0;
connection function = exp(1.0, -1.0, 1.0);

Figure 2
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*Code for PON unit which is selective for 45 coaree lines. I

~agaonai _ ine(cei)
CELce.Li;

int input-sum;
CONNECTION connection;
CEL .target cell;

/Get the target (center cell) of the implicit receptive field. '

target _ce. =
get _cell from connection (get network _connection(Inputu,

get _connection_ljst(cell),

get_number_conections(cell)));

/* Sum the inputs for the target cell and its nearest neiqhboors.
Note that nearest neignboors are referenced by their relative
location (in degrees) to the target cell./

.xnput _sum += 1.0 -get _firing_ rate(target _ cell);

input sum -= -.5 -get _firing_rate (get _nearest -neighboor(target_cell,0));
input-_Sum += .5 g et _ firing_rate(get _ nearest _neighboor(target _ cell,45)l;

input-Sum + = -.5 *get _fi.ring_rate(get_nearest neighboor(target-cell,90));
nout-sum - -2.0 *get _firing_ rate (get _nearest _ neighboor(target _ cell,135));

.nout sum -= -. 5 * get _firing_ rate(get _nearest neighboor(target _ cell,180)(;
,~n~ut-sum -= .5 g cet _ f;irng_rate(get _nearest neighboor(target _cell,225));
Input sum -= -5 *get _firing_ rate(get _nearest -neighboor(target _ cell,2

7
0));

n'put-sum -= -2.0 g et _firing_rate (get _nearest _neighboor(target _ceil,315));

*set the cells activity using a sigmnoid with maximum value 100,
minimum value 0 and centered at 0 (units has 0 threshold) .

set _ Eiring_ rate(cell,sigmoid(input _sum, 100.0, 0.0, 0.0));

Figure 3c
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